US 10,599,560 B2

3

(e.g., a machine-readable storage medium) and perform any
one or more of the methodologies discussed herein.

It will be noted that throughout the appended drawings,
like features are identified by like reference numerals.

DETAILED DESCRIPTION

The description that follows describes systems, methods,
techniques, instruction sequences, and computing machine
program products that constitute illustrative embodiments of
the disclosure. In the following description, for the purposes
of explanation, numerous specific details are set forth in
order to provide an understanding of various embodiments
of the inventive subject matter. It will be evident, however,
to those skilled in the art, that embodiments of the inventive
subject matter may be practiced without these specific
details.

Current object-oriented programing is not optimized for
performance due in part to the use of reference value objects
that contain pointers to data rather than containing data
directly. Existing game development technology often uses
reference value structures to define objects within a game.
This is based on the concept of an object within the
object-oriented programming framework and is used for
simplicity of programming (e.g., since the behavior and
attributes of a programming object align well with those of
a game object). However, object oriented programming may
be optimized on a conceptual level and for ease of program-
ming, but it is not always optimized for performance with
respect to video game play. The main reason for the lack of
optimized performance is that OOP programing does not
automatically provide the optimum use of memory. OOP
objects often contain pointers to data while the data itself is
scattered randomly over distant memory locations. The
result is that game object data is often in random places
within memory and often contains pointers (e.g., to data) in
other random locations within memory. In order to access
the data for one or more characters (e.g., to determine the
character location in a scene), a game engine will often have
to access several separate random memory locations. There
is also no hard guarantee of the relative location of data
within memory for two different game objects. Accessing
random memory locations for all game objects in a video
game scene which runs at 60 frames per second (fps) or
more is inefficient, especially considering the large amount
of game objects which are typically in play during any given
video game frame. Having game object data scattered over
memory creates an inefficiency due to memory access time
(e.g., the time it takes a central processing unit (CPU) to
access a memory location, which is typically hundreds of
CPU cycles each time a memory location is accessed). All
memory accessing takes time; however, having to access
memory in random distant locations requires additional time
because the advantages of hardware prefetching are negated.
The additional time it takes to access the scattered data
within memory lowers the performance of executed game
code at runtime. This puts limitations, for a given CPU
speed, on the number of game objects that can be active in
a frame during game play if a frame rate is to be maintained
(e.g., 60 frames per second for typical games). This is
particularly important for virtual reality applications which
require 90 frames per second for minimum quality visual
output. Modern game design improves performance by
incorporating graphical processing units (GPUs) to offload
processing from the CPU, as well as multithreaded coding
techniques to parallelize the processing of game data over
multiple CPU/GPU cores. However, these techniques do not

20

40

45

55

4

overcome the fundamental issue of accessing separate ran-
dom memory locations for game objects.

Game performance can also be improved by considering
data oriented programming methodology as opposed to
object oriented programming methodology, however, data
oriented programming requires a high degree of knowledge
for a game developer, and is done manually, and is specifi-
cally targeted to each game. This is out of reach for a large
portion of game developers and game designers who have
only a basic knowledge of programming methodology.

Methods and apparatuses to improve the performance of
a video game engine using an Entity Component System
(ECS) are described herein. In accordance with an embodi-
ment, the ECS eliminates (e.g., during game development
and at runtime) the use of OOP reference value structures
(e.g., pointers) to define game objects. Instead, the ECS
defines game objects with data value structures (e.g., a
‘struct’ from C#) which do not use pointers to store data. In
this sense, a same object as described herein is not an
‘object” as defined within object oriented programming
framework; accordingly, a game object as described herein
(e.g., within the ECS) is referred to as an ‘entity’.

In accordance with an embodiment, the ECS creates and
uses entitles which are constructed entirely using value data
types (e.g., structs in C# which do not use pointers). An
entity is a collection of data that is used to represent anything
in a video game, including characters, guns, treasures, trees,
backgrounds, animation, effects (e.g., video and sound), 3D
points, and more. The ECS groups a plurality of entities into
an archetype wherein the entities share similar attributes
(e.g., components as described herein) and memory layout.
The ECS constructs the entities (e.g., including the compo-
nents therein) within a memory in a densely packed and
linear way. The ECS constantly monitors (e.g., during game
play) entities within a game and adjusts the entity distribu-
tion (e.g., including the data therein) within the memory so
that a maximum density of memory usage is maintained in
real time as the game is being played thus allowing for high
performance due to efficient memory access (e.g., using
hardware prefetching) and multithreading. The ECS system
provides high performance for game situations that include
a large number (e.g., hundreds or thousands) of similar game
objects (e.g., non-player characters, rockets, spaceships,
etc.).

Turning now to the drawings, systems and methods for an
Entity Component System (ECS) which is configured to
provide high processing performance for a video game
engine (e.g., to display video games or simulations) in
accordance with embodiments of the invention are illus-
trated. In accordance with an embodiment, FIG. 1 shows an
example entity component system 100 configured to provide
ECS functionality. The ECS includes an ECS device 101
which includes one or more central processing units 104
(CPUs), and graphics processing units 106 (CPUs). The
CPU 104 is any type of processor, processor assembly
comprising multiple processing elements (not shown), hav-
ing access to a memory 102 to retrieve instructions stored
thereon, and execute such instructions. Upon execution of
such instructions, the instructions cause the ECS device 101
to perform a series of tasks as described herein. The CPU
can include a cache memory 105 within the CPU.

The ECS device 101 also includes one or more input
devices 108 such as, for example, a keyboard or keypad,
mouse, pointing device, and touchscreen. The ECS device
101 further includes one or more display devices 110, such
as a computer monitor, a touchscreen, and a head mounted
display (HMD), which may be configured to display a video



